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Abstract.
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1. Introduction

Graph theory has numerous applications to problems in computer science, electri-
cal engineering, system analysis, economics, networking routing and transportation,
etc. To overcome containing various kinds of uncertainty, in 1965, Zadeh [1] had
introduced the concept of a fuzzy set as the generalization of a crisp set. Also he
[2] had defined the notion of interval-valued fuzzy sets playing basic roles in many
fields of pure and applied science (See [3]). In 1975, Rosenfeld [4] introduced the
concept of fuzzy graphs considered by the fuzzy relations between fuzzy sets and
developed the structures of fuzzy graphs. After then, Bhattacharya [5] dealt with
some properties on fuzzy graphs. Mordeson and Peng [6] introduced some operations
on fuzzy graphs. In particular, Dey et al. [7] dealt with genetic algorithms for solv-
ing fuzzy shortest path problems (See [8, 9, 10, 11, 12] for further research papers).
Akram and Dudek [13] introduced the concept of interval-valued fuzzy graphs and
studied some of its properties. Also they dealt with some operations on interval-
valued fuzzy graphs. After that time, Pal et al. [14] studied further results related
to interval-valued fuzzy graphs. Talebi and Rashmalou [15] investigated properties
of isomorphism and the complements on interval-valued fuzzy graphs (See [16, 17]
for further research papers).
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In 1994, Zhang [18] introduced the concept of a bipolar fuzzy set (Refer to
[19, 20, 21]) as a generalization of fuzzy sets. Bosc and Pivert [22] said “Bipo-
larity refers to the propensity of the human mind to reason and make decisions
on the basis of positive and negative effects. Positive information states what is
possible, satisfactory, permitted, desired, or considered as being acceptable. How-
ever, negative statements express what is impossible, rejected, or forbidden.” After
then, Jun and Park [23], Jun et al. [24] and Lee [25] applied bipolar fuzzy sets to
BCK/BCI-algebras. Recently, Kim et al. [26] studied neighborhood systems in
bipolar fuzzy topological spaces. Lee and Hur [27] dealt with various properties of
bipolar fuzzy relations. In particular, Akram [28, 29] introduced the notion of bipo-
lar fuzzy graphs and regular bipolar fuzzy graphs and obtained some properties of
self complementary and self weak complementary strong bipolar fuzzy graph. Talebi
et al [30] investigated some operations on bipolar fuzzy graph.

The motivation behind introducing interval-valued bipolar fuzzy graphs (IVBFGs)
arises from the need to model systems that exhibit both positive and negative in-
fluences with inherent uncertainty. Many real-world problems involve duality (posi-
tive/negative) and imprecision, which cannot be effectively captured by classical or
even interval-valued fuzzy graphs alone. IVBFGs provide a more flexible framework
for representing such complex relationships.

Potential application areas of IVBFGs include decision support systems, social
network analysis, medical diagnosis systems, recommendation systems, and risk as-
sessment, where both positive and negative aspects coexist and uncertainty is preva-
lent. The main contributions of this paper are summarized as follows:

• We introduce the concept of interval-valued bipolar fuzzy graphs (IVBFGs)
and establish their fundamental properties.
• We define basic operations and structural properties of IVBFGs.
• We suggest possible future research directions in this domain.

The purpose of our research is to study the structure of a graph based on an
interval-valued bipolar fuzzy set. To do this, the research is conducted in the follow-
ing order: In Section 2, we recall some basic concepts for graphs and interval-valued
bipolar fuzzy sets. In Section 3, we define an interval-valued bipolar fuzzy graph
and some operations on interval-valued bipolar fuzzy graphs, and deal with some of
their basic properties and give some examples. In Section 4, we introduce the no-
tions of isomorphisms and isometrics between interval-valued bipolar fuzzy graphs,
and study some of their properties.

2. Preliminaries

In this section, we review some definitions of undirected graphs needed in next
sections. Also, we list the concept of bipolar fuzzy set, the complement of a bipolar
fuzzy set, the inclusion between two bipolar fuzzy sets, the union and the intersection
of two bipolar fuzzy sets. Throughout this paper, we will denote the [0, 1] and [−1, 0]
as I and −I, respectively. Also, we will denote the set of all closed subintervals of I
and −I as [I] and [−I], respectively.

Definition 2.1 ([31]). (i) A graph is an ordered pair G∗ = (V,E), where V is the
set of vertices of G∗ and E is the set of edges of G∗ such that every edge corresponds
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to a two-element subset of V . We use the notation xy instead of {x, y}. In this case,
the number of vertices [resp. of edges] in V is called the order [resp. size] of G∗ and
is denoted by |V | [resp. |E|]. In particular, a graph G∗, we denote the set of vertices
and edges of G∗ as V (G∗) and E(G∗), respectively.

(ii) G∗ = (V,E) is called a (p, q) graph, if |V | = p and |E| = q.
(iii) Two vertices x and y in an undirected graph G∗ are said to be adjacent in

G∗, if (x, y) is an edge of G∗.
(vi) A simple graph is an undirected graph that has no loops and no more than

one edge between any two different vertices.

Definition 2.2 ([31]). Let G∗ = (V,E) and H∗ = (W,F ) be two graphs. Then
H∗ = (W,F ) is called a subgraph of G∗ = (V,E), if W ⊂ V and F ⊂ E.

Definition 2.3 ([31]). Let G∗ = (V,E) be a graph. Then G∗ is called the comple-
ment of G∗, if V (G∗) = V and e ∈ E(G∗) if and only if e 6∈ E.

It is clear that two vertices are adjacent in G∗ if and only if they are nor adjacent
in G∗.

Definition 2.4 ([31]). Let G∗1 = (V1, E1) and G∗2 = (V2, E2) be two graphs. Then
the Cartesian product of G∗1 and G∗2, denoted by G∗ = G∗1×G∗2 = (V,E), is a graph
defined as follows:

(i) V = V1 × V2,
(ii) E = {(x, x2)(x, y2) : x ∈ V1, x2y2 ∈ E2}∪{(x1, y)(x2, y) : y ∈ V2, x1y1 ∈ E1}.

Definition 2.5 ([31]). Let G∗1 = (V1, E1) and G∗2 = (V2, E2) be two simple graphs.
Then the composition of G∗1 and G∗2, denoted by G∗1[G∗2] = (V1 × V2, E

0), is the
graph, where

E0 = E ∪ {(x1, x2)(y1, y2) : x1y1 ∈ E1, x2 6= y2}
and E is defined in G∗1 ×G∗2. Note that G∗1[G∗2] 6= G∗2[G∗1].

Definition 2.6 ([31]). Let G∗1 = (V1, E1) and G∗2 = (V2, E2) be two simple graphs.
(i) The union of G∗1 and G∗2, denoted by G∗1 ∪ G∗2, is the simple graph with the

vertex set V1 ∪ V2 and the edge set E1 ∪ E2. In fact, G∗1 ∪G∗2 = (V1 ∪ V2, E1 ∪ E2).
(ii) The join of G∗1 and G∗2, denoted by G∗1 + G∗2, is the simple graph with the

vertex set V1 ∪ V2 such that V1 ∩ V2 6= ∅ and the edge set E1 ∪ E2 ∪ E
′
, where E

′

is the set of all edges between vertices of G∗1 and vertices of G∗2. In fact, G∗1 +G∗2 =

(V1 ∪ V2, E1 ∪ E2 ∪ E
′
).

Definition 2.7 ([31]). Let G∗1 = (V1, E1) and G∗2 = (V2, E2) be two graphs. Then
we say that G∗1 and G∗2 are isomorphic, denoted by G∗1 ' G∗2, if there is a bijection
f : V1 → V2 such that for any x, y ∈ V1, xy ∈ E1 if and only if f(x)f(y) ∈ E2.

Definition 2.8 ([19]). Let X be a nonempty set. Then a pair A = (AP , AN ) is
called a bipolar-valued fuzzy set (or, bipolar fuzzy set) in X, if AP : X → I and
AN : X → −I are mappings.

In particular, the bipolar fuzzy empty set [resp. the bipolar fuzzy whole set] (See
[32]), denoted by 0bp = (0Pbp, 0

N
bp) [resp. 1bp = (1Pbp, 1

N
bp)], is a bipolar fuzzy set in X

defined by: for each x ∈ X,

0Pbp(x) = 0 = 0Nbp(x) [resp. 1Pbp(x) = 1 and 1Nbp(x) = −1].
3
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We will denote the set of all bipolar fuzzy sets in X as BPF (X).

For each x ∈ X, we use the positive membership degree AP (x) to denote the
satisfaction degree of the element x to the property corresponding to the bipolar
fuzzy set A and the negative membership degree AN (x) to denote the satisfaction
degree of the element x to some implicit counter-property corresponding to the
bipolar fuzzy set A.

If AP (x) 6= 0 and AN (x) = 0, then it is the situation that x is regarded as
having only positive satisfaction for A. If AP (x) = 0 and AN (x) 6= 0, then it is
the situation that x does not satisfy the property of A, but somewhat satisfies the
counter-property of A. It is possible for some x ∈ X to be such that AP (x) 6= 0
and AN (x) 6= 0 when the membership function of the property overlaps that of its
counter-property over some portion of X.

It is obvious that for each A ∈ BPF (X) and x ∈ X, if 0 ≤ AP (x)− AN (x) ≤ 1,
then A is an intutionistic fuzzy set introduced by Atanassov [33]. In fact, AP (x)
[resp. −AN (x)] denotes the membership degree [resp. non-membership degree] of x
to A.

Definition 2.9 ([19]). Let X be a nonempty set and let A, B ∈ BPF (X).
(i) We say that A is subset of B, denoted by A ⊂ B, if for each x ∈ X,

AP (x) ≤ BP (x) and AN (x) ≥ BN (x).

(ii) The complement of A, denoted by Ac = ((Ac)P , (Ac)N ), is a bipolar fuzzy set
in X defined as: for each x ∈ X, Ac(x) = (1−AP (x),−1−AP (x)), i.e.,

(Ac)P (x) = 1−AP (x), (Ac)N (x) = −1−AN (x).

(iii) The intersection of A and B, denoted by A ∩ B, is a bipolar fuzzy set in X
defined as:for each x ∈ X,

(A ∩B)(x) = (AP (x) ∧BP (x), AN (x) ∨BN (x)).

(iv) The union of A and B, denoted by A∪B, is a bipolar fuzzy set in X defined
as: for each x ∈ X,

(A ∪B)(x) = (AP (x) ∨BP (x), AN (x) ∧BN (x)).

Definition 2.10 ([34]). Let X be a nonempty set and let (Aj)j∈J ⊂ BPF (X).
(i) The intersection of (Aj)j∈J , denoted by

⋂
j∈J Aj , is a bipolar fuzzy set in X

defined by: for each x ∈ X,

(
⋂
j∈J

Aj)(x) = (
∧
j∈J

AP
j (x),

∨
j∈J

AN
j (x)).

(ii) The union of (Aj)j∈J , denoted by
⋃

j∈J Aj , is a bipolar fuzzy set in X defined
by: for each x ∈ X,

(
⋃
j∈J

Aj)(x) = (
∨
j∈J

AP
j (x),

∧
j∈J

AN
j (x)).

4
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Result 2.11 ([34], Proposition 3.8). Let A ∈ BPF (X) and let (Aj)j∈J ⊂ BPF (X).
Then

(1) (Generalized distributive laws): A ∪ (
⋂

j∈J Aj) =
⋂

j∈J(A ∪Aj),

A ∩ (
⋃

j∈J Aj) =
⋃

j∈J(A ∩Aj),

(2) (Generalized DeMorgan’s laws): (
⋃

j∈J Aj)
c =

⋂
j∈J A

c
j, (
⋂

j∈J Aj)
c =

⋃
j∈J A

c
j.

Definition 2.12 ([35, 36]). Let X be a nonempty set. Then a mapping A =
(AP , AN ) : X → [I] × [−I] is called an interval-valued bipolar fuzzy set (in short,
IVB set) in X.

In fact, AP (x) = [AP,−(x), AP,+(x)] and AN (x) = [AN,−(x), AN,+(x)], for each
x ∈ X.

In particular, the interval-valued bipolar fuzzy empty set [resp. the interval-
valued bipolar fuzzy whole set], denoted by 0IV B = (0P

IV B ,0
N
IV B) [resp. 1IV B =

(1P
IV B ,1

N
IV B)], is an IVB set in X defined by: for each x ∈ X,

0P
IV B(x) = [0, 0] = 0N

IV B(x) [resp. 1P
IV B(x) = [1, 1], 1N

IV B(x) = [−1,−1]].

We will denote the set of all IVB sets in X as IV B(X).

For each x ∈ X, we use the positive membership degree AP (x) to denote the
satisfaction degree of the element x to the property corresponding to the IVB set A
and the negative membership degree AN (x) to denote the satisfaction degree of the
element x to some implicit counter-property corresponding to the IVB set A.

If AP (x) 6= [0, 0] and AN (x) = [0, 0], then it is the situation that x is regarded as
having only positive satisfaction for A. If AP (x) = [0, 0] and AN (x) 6= [0, 0], then it
is the situation that x does not satisfy the property of A, but somewhat satisfies the
counter-property of A. It is possible for some x ∈ X to be such that AP (x) 6= [0, 0]
and AN (x) 6= [0, 0] when the membership function of the property overlaps that of
its counter-property over some portion of X.

Refer to [3, 2] for the definition of an interval-valued fuzzy set and the order, the
equality, the union, the intersection of interval-valued fuzzy sets and the complement
of an interval-valued fuzzy set.

Definition 2.13 ([36]). Let X be a nonempty set and let A, B ∈ IV B(X), (Aj)j∈J
be a subfamily of IV B(X).

(i) We say that A is a subset of B, denoted by A ⊂ B, if for each x ∈ X,

AP (x) ≤ BP (x) and AN (x) ≥ BN (x), i.e.,

AP,−(x) ≤ BP,−(x), AP,+(x) ≤ BP,+(x), AN,−(x) ≥ BN,−(x), AN,+(x) ≥ BN,+(x).

(ii) We say that A is equal to B, denoted by A = B, if A ⊂ B and B ⊂ A.
(iii) The union of A and B, denoted by A∪B, is an IVB set in X defined by: for

each x ∈ X,

(A ∪B)(x) = (AP (x) ∨BP (x), AN (x) ∧BN (x)),

where AP (x) ∨BP (x) = [AP,−(x) ∨BP,−(x), AP,+(x) ∨BP,+(x)]
and

AN (x) ∧BN (x) = [AN,−(x) ∧BN,−(x), AN,+(x) ∧BN,+(x)].
5
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(iv) The union of (Aj)j∈J , denoted by
⋃

j∈J Aj , is an IVB set in X defined by:
for each x ∈ X,

(
⋃
j∈J

Aj)(x) = (
∨
j∈J

AP
j (x),

∧
j∈J

AN
j (x)),

where
∨

j∈J A
P
j (x) = [

∨
j∈J A

P,−
j (x),

∨
j∈J A

P,+
j (x)]

and ∧
j∈J A

N
j (x) = [

∧
j∈J A

N,−
j (x),

∧
j∈J A

N,+
j (x)].

(v) The intersection of A and B, denoted by A ∩ B, is an IVB set in X defined
by: for each x ∈ X,

(A ∩B)(x) = (AP (x) ∧BP (x), AN (x) ∨BN (x)),

where AP (x) ∧BP (x) = [AP,−(x) ∧BP,−(x), AP,+(x) ∧BP,+(x)]
and

AN (x) ∨BN (x) = [AN,−(x) ∨BN,−(x), AN,+(x) ∨BN,+(x)].
(vi) The intersection of (Aj)j∈J , denoted by

⋂
j∈J Aj , is an IVB set in X defined

by: for each x ∈ X,

(
⋂
j∈J

Aj)(x) = (
∧
j∈J

AP
j (x),

∨
j∈J

AN
j (x)),

where
∧

j∈J A
P
j (x) = [

∧
j∈J A

P,−
j (x),

∧
j∈J A

P,+
j (x)]

and ∨
j∈J A

N
j (x) = [

∨
j∈J A

N,−
j (x),

∨
j∈J A

N,+
j (x)].

(Vii) the complement of A, denoted by Ac = ((Ac)P , (Ac)N ), is an IVB set in X
defined as follows: for each x,∈ X,

(Ac)P (x) = 1−AP (x) = [1−AP,+(x), 1−AP,−(x)],

(Ac)N (x) = −1−AN (x) = [−1−AN,+(x),−1−AN,−(x)].

Definition 2.14 ([18]). Let X be a nonempty set. Then a mapping R = (RP , RN ) :
X ×X → I ×−I is called a bipolar fuzzy relation on X.

Definition 2.15 ([18]). Let X be a nonempty set, let A be a bipolar fuzzy set in
X and let R be a bipolar fuzzy relation on X. Then

(i) R is called a bipolar fuzzy relation on A, if for any x, y ∈ X,

RP (x, y) ≤ AP (x) ∧AP (y) and RN (x, y) ≥ AN (x) ∨AN (y),

(ii) R is said to be symmetric, if RP (x, y) = RP (y, x) and RN (x, y) = RN (y, x),
for each (x, y) ∈ X ×X.

Definition 2.16 ([28]). Let G∗ = (V,E) be a graph. Then a pair G = (A,B) is
called a bipolar fuzzy graph of G∗, if it satisfies the following conditions:

(i) A is a bipolar fuzzy set in V ,
(ii) B is a bipolar fuzzy set in E ⊂ V × V such that for each {x, y} ∈ E,

BP ({x, y}) ≤ AP (x) ∧AP (y) and BN ({x, y}) ≥ AN (x) ∨AN (y).

In this case, we will call A the bipolar fuzzy vertex set of V and B the bipolar fuzzy
edge set of E, respectively.

6



Chae et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

It is obvious that B is a bipolar fuzzy symmetric relation on A. Thus by using the
notation xy for an element of E, G = (A,B) is a bipolar fuzzy graph of G∗ = (V,E),
if for all xy ∈ E,

BP (xy) ≤ AP (x) ∧AP (y) and BN (xy) ≥ AN (x) ∨AN (y).

3. Basic properties of interval-valued bipolar fuzzy graphs

In this section, we introduce the notion of interval-valued bipolar fuzzy graphs
and some operations between them, we find some of their basic properties and give
some examples.

Definition 3.1. Let X be a nonempty set. Then a mapping R = (RP , RN ) :
X × X → [I] × [−I] is called an interval-valued bipolar fuzzy relation (in short,
IVBR) on X.

In fact, RP (x) = [RP,−(x), RP,+(x)] and RN (x) = [RN,−(x), RN,+(x)], for each
x ∈ X.

In particular, the interval-valued bipolar fuzzy empty relation [resp. the interval-
valued bipolar fuzzy whole relation], denoted by 0IV BR = (0P

IV BR,0
N
IV BR) [resp.

1IV BR = (1P
IV B ,1

N
IV B)], is an IVB set in X defined by: for each x ∈ X,

0P
IV BR(x) = [0, 0] = 0N

IV BR(x) [resp. 1P
IV BR(x) = [1, 1], 1N

IV BR(x) = [−1,−1]].

We will denote the set of all IVBRs on X as IV BR(X).

Example 3.2. Let R : I × I → [I] × [−I] be the mapping defined as follows: for
any x, y ∈ I,

R(x, y) = ([
x+ y

5
,
x+ y

2
], [−x+ y

3
,−x+ y

6
]).

Then clearly R is an IVBR on I.

Definition 3.3. Let X be a nonempty set, let A ∈ IV B(X) and R ∈ IV BR(X).
Then

(i) R is called an interval-valued bipolar fuzzy relation on A, if for any x, y ∈ X,

RP (x, y) ≤ AP (x) ∧AP (y) and RN (x, y) ≥ AN (x) ∨AN (y),

(ii) R is said to be symmetric, if RP (x, y) = RP (y, x) and RN (x, y) = RN (y, x),
for each (x, y) ∈ X ×X.

Example 3.4. Let R be the IVBR on I given in Example 3.2 and let A be the IVB
set in I given by: for each x ∈ I,

A(x) = ([
1 + x

5
,

1 + x

2
], [−1 + x

3
,−1 + x

6
]).

Then we can easily see that R is an IVBR on A. Moreover, R is symmetric.

Definition 3.5. Let G∗ = (V,E) be a graph. Then a pair G = (A,B) is called
an interval-valued bipolar fuzzy graph (in short, IVBG) of G∗, if it satisfies the
following conditions:

(i) A ∈ IV B(V ),
(ii) B ∈ IV B(E) such that for each xy ∈ E ⊂ V × V ,

BP (xy) ≤ AP (x) ∧AP (y) and BN (xy) ≥ AN (x) ∨AN (y),
7
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Figure 1. An IVFB of G∗.

where BP (xy) = [BP,−(x, y), BP,+(x, y)] ≤ [AP,−(x) ∧AP,−(y), AP,+(x) ∧AP,+(y)]
and

BN (xy) = [BN,−(x, y), BN,+(x, y)] ≥ [AN,−(x)∨AN,−(y), AN,+(x)∨AN,+(y)].
In this case, A be called the interval-valued bipolar fuzzy vertex set of V and B the
interval-valued bipolar fuzzy edge set of E, respectively.

It is obvious that B is an interval-valued bipolar fuzzy symmetric relation on A.
Thus G = (A,B) is an IVBG of G∗ = (V,E), if for all xy ∈ E,

BP (xy) ≤ AP (x) ∧AP (y) and BN (xy) ≥ AN (x) ∨AN (y).

Remark 3.6. Suppose G = (A,B) is an IVBG of a graph G∗ = (V,E). Then from
Definition 3.5, we have

(i) A− = (AP,−, AN,−) and A+ = (AP,+, AN,+) are bipolar fuzzy sets in V ,
(ii) B− = (BP,−, BN,−) and B+ = (BP,+, BN,+) are bipolar fuzzy sets in V such

that for all xy ∈ E ⊂ V × V ,

BP,−(xy) ≤ AP,−(x) ∧AP,−(y) and BN,−(xy) ≥ AN,−(x) ∨AN,−(y),

BP,+(xy) ≤ AP,+(x) ∧AP,+(y) and BN,+(xy) ≥ AN,+(x) ∨AN,+(y).

Thus G− and G+ are bipolar fuzzy graphs of G∗, where

G− = (A−, B−) and G+ = (A+), B+).

Furthermore, we can easily see that if AN (x) = [0, 0] for each x ∈ V , then G−

and G+ are fuzzy graphs of G∗.

Example 3.7. Let G∗ = (V,E) be a graph such that V = {a, b, c} and E =
{ab, bc, ca}. Let A be an IVB set in V and let B be an IVB set in E ⊂ V ×V defined
as follows:

V A(t)
a ([0.5, 0.7], [−0.3,−0.2])
b ([0.4, 0.8], [−0.5,−0.3])
c ([0.6, 0.9], [−0.6,−0.4])

E B(x)
ab ([0.3, 0.6], [−0.3,−0.1])
bc ([0.4, 0.7], [−0.5,−0.4])
ca ([0.5, 0.6], [−0.4,−0.3])

Then we can easily see that G is an IVBG of G∗ (see Figure 1).

Remark 3.8. Let G = (A,B) be an IVBG of a graph G∗ = (V,E). Then it is
obvious that if AP (x) = AN (x) = [0, 0] and BP (x) = BN (x) = [0, 0] for some

8
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x, y ∈ V , then there is no edge between x and y, and otherwise, there exists an edge
between x and y.

Definition 3.9. Let G1 = (A1, B1) and G2 = (A2, B2) be two IVBGs of graphs
G∗1 = (V1, E1) and G∗2 = (V2, E2). Then the Cartesian product of G1 and G2,
denoted by G1 ×G2 = (A1 ×A2, B1 ×B2), is defined as follows:

(i) (AP
1 ×AP

2 )(x1, x2) = [AP,−
1 (x1) ∧AP,−

2 (x2), AP,+
1 (x1) ∧AP,+

2 (x2)],
= AP

1 (x1) ∧AP
2 (x2),

(AN
1 ×AN

2 )(x1, x2) = [AN,−
1 (x1) ∨AN,−

2 (x2), AN,+
1 (x1) ∨AN,+

2 (x2)]
= AN

1 (x1) ∨AN
2 (x2),

for each (x1, x2) ∈ V1 × V2,

(ii) (BP
1 ×BP

2 )((x, x2)(x, y2)) = [AP,−
1 (x) ∧BP,−

2 (x2y2), AP,+
1 (x) ∧BP,+

2 (x2y2)]
= AP

1 (x) ∧BP
2 (x2y2),

(BN
1 ×BN

2 )((x, x2)(x, y2)) = [AN,−
1 (x) ∨BN,−

2 (x2y2), AN,+
1 (x) ∨BN,+

2 (x2y2)]
= AN

1 (x) ∧BN
2 (x2y2),

for each x∈V1 and each x2y2 ∈ E2,

(iii) (BP
1 ×BP

2 )((x1, y)(y1, y)) = [BP,−
1 (x1y1) ∧AP,−

2 (y), BP,+
1 (x1y1) ∧AP,+

2 (y)]
= BP

1 (x1y1) ∧AP
2 (y),

(BN
1 ×BN

2 )((x1, y)(y1, y)) = [BN,−
1 (x1y1) ∨AN,−

2 (y), BN,+
1 (x1y1) ∨AN,+

2 (y)]
= BN

1 (x1y1) ∧AN
2 (y),

for each y ∈ V2 and each x1y1 ∈ E1.

Proposition 3.10. The Cartesian product of two IVBGs is an IVBG.

Proof. Suppose G1 = (A1, B1) and G2 = (A2, B2) are two IVBGs of graphs G∗1 =
(V1, E1) and G∗2 = (V2, E2). Then by Definition 2.4, G∗ = G∗1 × G∗2 = (V,E) is
a graph, where V = V1 × V2 and E = {(x, x2)(x, y2) : x ∈ V1, x2y2 ∈ E2} ∪
{(x1, y)(x2, y) : y ∈ V2, x1y1 ∈ E1}. From Definition Definition 3.9, it is clear that
A1 × A2 ∈ IV B(V1 × V2). Let us prove that B1 × B2 satisfies the condition (ii) in
Definition 3.5.

Let x ∈ V1 and let x2y2 ∈ E2. Then
(BP

1 ×BP
2 )((x, x2)(x, y2)) = AP

1 (x) ∧BP
2 (x2y2)

≤ AP
1 (x) ∧ (AP

2 (x2) ∧AP
2 (y2))

= (AP
1 (x) ∧AP

2 (x2)) ∧ (AP
1 (x) ∧AP

2 (y2))
= (AP

1 ×AP
2 )(x, x2) ∧ (AP

1 ×AP
2 )(x, y2).

Similarly, we can show that

(BN
1 ×BN

2 )((x, x2)(x, y2)) ≥ (AN
1 (x) ∨AN

2 (x2)) ∨ (AN
1 (x) ∧AN

2 (y2)).

Now let y ∈ V2 and let x1y1 ∈ E1. Then
(BP

1 ×BP
2 )((x1, y)(y1, y)) = BP

1 (x1y1) ∧AP
2 (y)

≤ (AP
1 (x1) ∧ (AP

2 (y1)) ∧AP
2 (y)

= (AP
1 (x1) ∧AP

2 (y)) ∧ (AP
1 (y1) ∧AP

2 (y))
= (AP

1 ×AP
2 )(x1, y) ∧ (AP

1 ×AP
2 )(y1, y).

Similarly, we can prove that

BN
1 ×BN

2 )((x1, y)(y1, y)) ≥ (AN
1 ×AN

2 )(x1, y) ∨ (AN
1 ×AN

2 )(y1, y).

Thus G1 ×G2 is an IVBG of G∗1 ×G∗2. �
9
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Figure 2. G1, G2, and G1 ×G2.

Example 3.11. Let G∗1 = (V1, E1) and G∗2 = (V2, E2) be two graphs such that
V1 = {a, b}, V2 = {c, d}, E1 = {ab} and E2 = {cd}. Let G1 = (A1, B1) and
G2 = (A2, B2) be the IVBGs of G∗1 and G∗2, respectively defined as follows:

A1(a) = ([0.4, 0.8], [−0.5,−0.3]), A1(b) = ([0.5, 0.7], [−0.6,−0.2]),

B1(ab) = ([0.3, 0.7], [−0.5,−0.2]),

A2(c) = ([0.5, 0.7], [−0.6,−0.2]), A2(d) = ([0.4, 0.8], [−0.5,−0.3]),

B2(cd) = ([0.4, 0.7], [−0.4,−0.1]).

Then we can easily calculate that:

(B1 ×B2)((a, c)(a, d)) = ([0.4, 0.7], [−0.5,−0.2]),

(B1 ×B2)((b, c)(b, d)) = ([0.4, 0.7], [−0.5,−0.2]),

(B1 ×B2)((a, c)(b, c)) = ([0.3, 0.7], [−0.4,−0.1]),

(B1 ×B2)((a, d)(b, d)) = ([0.3, 0.7], [−0.4,−0.1]).

Thus we can easily see that G1 ×G2 is an IVBG of G∗1 ×G∗2 (see Figure 2).

Definition 3.12. Let G1 = (A1, B1) and G2 = (A2, B2) be two IVBGs of graphs
G∗1 = (V1, E1) and G∗2 = (V2, E2). Then the composition of G1 and G2, denoted by
G1[G2] = (A1 ◦A2, B1 ◦B2), is defined as follows:

(i) (AP
1 ◦AP

2 )(x1, x2) = [AP,−
1 (x1) ∧AP,−

2 (x2), AP,+
1 (x1) ∧AP,+

2 (x2)]
= AP

1 (x1) ∧AP
2 (x2),

(AN
1 ◦AN

2 )(x1, x2) = [AN,−
1 (x1) ∨AN,−

2 (x2), AN,+
1 (x1) ∨AN,+

2 (x2)]
= AN

1 (x1) ∨AN
2 (x2),

for each (x1, x2) ∈ V1 × V2,

(ii) (BP
1 ◦BP

2 )((x, x2)(x, y2)) = [AP,−
1 (x) ∧BP,−

2 (x2y2), AP,+
1 (x) ∧BP,+

2 (x2y2)]
= AP

1 (x) ∧BP
2 (x2y2),

(BN
1 ◦BN

2 )((x, x2)(x, y2)) = [AN,−
1 (x) ∨BN,−

2 (x2y2), AN,+
1 (x) ∨BN,+

2 (x2y2)]
10
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= AN
1 (x) ∧BN

2 (x2y2),
for each x∈V1 and each x2y2 ∈ E2,

(iii) (BP
1 ◦BP

2 )((x1, y)(y1, y)) = [BP,−
1 (x1y1) ∧AP,−

2 (y), BP,+
1 (x1y1) ∧AP,+

2 (y)]
= BP

1 (x1y1) ∧AP
2 (y),

(BN
1 ◦BN

2 )((x1, y)(y1, y)) = [BN,−
1 (x1y1) ∨AN,−

2 (y), BN,+
1 (x1y1) ∨AN,+

2 (y)]
= BN

1 (x1y1) ∧AN
2 (y),

for each y ∈ V2 and each x1y1 ∈ E1,
(iv) (BP

1 ◦BP
2 )((x1, x2)(y1, y2)) = AP

2 (x2) ∧AP
2 (y2) ∧BP

1 (x1y1),
(BN

1 ◦BN
2 )((x1, x2)(y1, y2)) = AN

2 (x2) ∨AN
2 (y2) ∨BP

1 (x1y1),
for any (x1, x2)(y1, y2) ∈ E0 − E.

Proposition 3.13. The composition of two IVBGs is an IVBG.

Proof. Suppose G1 = (A1, B1) and G2 = (A2, B2) are two IVBGs of graphs G∗1 =
(V1, E1) and G∗2 = (V2, E2). Then by Definition 3.12 and the proof of Proposition
3.12, we have

(3.1) (BP
1 ◦BP

2 )((x, x2)(x, y2)) ≤ (AP
1 ◦AP

2 )(x, x2) ∧ (AP
1 ◦AP

2 )(x, x2),

for each x ∈ V1 and each x2y2 ∈ E2,

(3.2) (BN
1 ◦BN

2 )((x, x2)(x, y2)) ≥ (AN
1 ◦AN

2 )(x, x2) ∨ (AN
1 ◦AN

2 )(x, x2),

for each x ∈ V1 and each x2y2 ∈ E2,

(3.3) (BP
1 ◦BP

2 )((x1, y)(y1, y)) ≤ (AP
1 ◦AP

2 )(x1, y) ∧ (AP
1 ◦AP

2 )(y1, y),

for each y ∈ V2 and each x1y1 ∈ E1,

(3.4) (BN
1 ◦BN

2 )((x1, y)(y1, y)) ≥ (BN
1 ◦BN

2 )(x1, y) ∨ (BN
1 ◦BN

2 )(y1, y),

for each y ∈ V2 and each x1y1 ∈ E1.
Now let (x1, x2)(y1, y2) ∈ E0 − E. Then clearly, x1y1 ∈ E1 and x2 6= y2. Thus

(BP
1 ◦BP

2 )(x1, x2)(y1, y2) = AP
2 (x2) ∧AP

2 (y2) ∧BP
1 (x1y1)

≤ (AP
2 (x2) ∧AP

2 (y2)) ∧ (AP
1 (x1) ∧AP

1 (y1))
= (AP

1 (x1) ∧AP
2 (x2)) ∧ (AP

1 (y1) ∧AP
2 (y2))

= (AP
1 ◦AP

2 )(x1, x2) ∧ (AP
1 ◦AP

2 )(y1, y2).
Similarly, we have (BN

1 ◦BN
2 )(x1, x2)(y1, y2) ≥ (AN

1 ◦AN
2 )(x1, x2)∨(AN

1 ◦AN
2 )(y1, y2).

So G1[G2] is an IVBG of G∗1[G∗2]. �

Example 3.14. Let G∗1 = (V1, E1) and G∗2 = (V2, E2) be as in Example 3.11. Let
G1 = (A1, B1) and G2 = (A2, B2) be the IVBGs of G∗1 and G∗2, respectively defined
as follows:

A1(a) = ([0.4, 0.5], [−0.6,−0.4]), A1(b) = ([0.3, 0.6], [−0.7,−0.3]),

B1(ab) = ([0.2, 0.4], [−0.5,−0.3]),

A2(c) = ([0.5, 0.8], [−0.7,−0.5]), A2(d) = ([0.6, 0.7], [−0.5,−0.4]),

B2(cd) = ([0.4, 0.6], [−0.4,−0.2]).

Then we have:

(B1 ◦B2)((a, c)(a, d)) = ([0.4, 0.5], [−0.4,−0.2]),

(B1 ◦B2)((b, c)(b, d)) = ([0.3, 0.6], [−0.4,−0.2]),
11
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Figure 3. G1, G2, and G1[G2].

(B1 ◦B2)((a, c)(b, c)) = ([0.2, 0.4], [−0.5,−0.3]),

(B1 ◦B2)((a, d)(b, d)) = ([0.2, 0.4], [−0.5,−0.3]),

(B1 ◦B2)((a, c)(b, d)) = ([0.2, 0.4], [−0.5,−0.3]),

(B1 ◦B2)((b, c)(a, d)) = ([0.2, 0.4], [−0.5,−0.3]).

Thus we can easily see that G1[G2] = (A1 ◦A2, B1 ◦B2) is an IVBG of G∗1[G∗2] (see
Figure 3).

Definition 3.15. Let G1 = (A1, B1) and G2 = (A2, B2) be two IVBGs of graphs
G∗1 = (V1, E1) and G∗2 = (V2, E2). Then the union of G1 and G2, denoted by
G1 ∪G2 = (A1 ∪A2, B1 ∪B2), is defined as follows:

(i)

(AP
1 ∪AP

2 )(x) =


AP

1 (x) if x ∈ V1 ∩ V c
2

AP
2 (x) if x ∈ V2 ∩ V c

1

AP
1 (x) ∨AP

2 (x) if x ∈ V1 ∩ V2,

(ii)

(AN
1 ∪AN

2 )(x) =


AN

1 (x) if x ∈ V1 ∩ V c
2

AN
2 (x) if x ∈ V2 ∩ V c

1

AN
1 (x) ∧AN

2 (x) if x ∈ V1 ∩ V2,

(iii)

(BP
1 ∪BP

2 )(xy) =


BP

1 (xy) if xy ∈ E1 ∩ Ec
2

BP
2 (xy) if xy ∈ E2 ∩ Ec

1

BP
1 (xy) ∨BP

2 (xy) if xy ∈ E1 ∩ E2,
12
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(iv)

(BN
1 ∪BN

2 )(xy) =


BN

1 (xy) if xy ∈ E1 ∩ Ec
2

BN
2 (xy) if xy ∈ E2 ∩ Ec

1

BN
1 (xy) ∧BN

2 (xy) if xy ∈ E1 ∩ E2.

Proposition 3.16. The union of two IVBGs is an IVBG.

Proof. Suppose G1 = (A1, B1) and G2 = (A2, B2) are two IVBGs of graphs G∗1 =
(V1, E1) and G∗2 = (V2, E2). We prove that G1∪G2 = (A1∪A2, B1∪B2) is an IVBG
of G∗1 ∪G∗2. Since the conditions (i) and (ii) in the above definition for A1 ∪A2 are
automatically satisfied, we show only the conditions for B1 ∪B2.

Suppose xy ∈ E1 ∩ E2. Then
(BP

1 ∪BP
2 )(xy) = BP

1 (xy) ∨BP
2 (xy)

≤ (AP
1 (x) ∧AP

1 (y)) ∨ (AP
2 (x) ∧AP

2 (y))
= (AP

1 (x) ∨AP
2 (x)) ∧ (AP

1 (y) ∨AP
2 (y))

= (AP
1 ∪AP

2 )(x) ∧ (AP
1 ∪AP

2 )(y),
(BN

1 ∪BN
2 )(xy) = BN

1 (xy) ∧BN
2 (xy)

≥ (AN
1 (x) ∨AN

1 (y)) ∧ (AN
2 (x) ∨AN

2 (y))
= (AN

1 (x) ∧AN
2 (x)) ∨ (AN

1 (y) ∧AN
2 (y))

= (AN
1 ∪AN

2 )(x) ∨ (AN
1 ∪AN

2 )(y).
Suppose xy ∈ E1 ∩ Ec

2 or xy ∈ E2 ∩ Ec
1. Then similarly, we can prove:

(BP
1 ∪BP

2 )(xy) ≤ (AP
1 ∪AP

2 )(x) ∧ (AP
1 ∪AP

2 )(y),

(BN
1 ∪BN

2 )(xy) ≥ (AN
1 ∪AN

2 )(x) ∨ (AN
1 ∪AN

2 )(y).

Thus G1 ∪G2 = (A1 ∪A2, B1 ∪B2) is an IVBG of G∗1 ∪G∗2. �

Example 3.17. Let G∗1 = (V1, E1) and G∗2 = (V2, E2) be two graphs such V1 =
{a, b, c, d, e}, E1 = {ab, bc, be, ce, ad, ed}, V2 = {a, b, c, d, f} and E1 = {ab, bc, cf, bf, bd}.
Let G1 = (A1, B1) and G2 = (A2, B2) be the IVBGs of G∗1 and G∗2, respectively de-
fined as follows:

V1 A1(t)
a ([0.2, 0.4], [−0.5,−0.2])
b ([0.4, 0.5], [−0.6,−0.3])
c ([0.3, 0.6], [−0.7,−0.5])
d ([0.3, 0.7], [−0.8,−0.6])
e ([0.2, 0.6], [−0.4,−0.3])

E1 B1(x)
ab ([0.1, 0.3], [−0.4,−0.1])
bc ([0.2, 0.4], [−0.5,−0.2])
ce ([0.5, 0.6], [−0.4,−0.3])
be ([0.1, 0.5], [−0.3,−0.2])
ad ([0.1, 0.3], [−0.4,−0.1])
de ([0.1, 0.6], [−0.3,−0.2])

V2 A2(t)
a ([0.2, 0.4], [−0.5,−0.2])
b ([0.2, 0.5], [−0.6,−0.4])
c ([0.3, 0.6], [−0.7,−0.5])
d ([0.2, 0.6], [−0.8,−0.7])
f ([0.4, 0.6], [−0.4,−0.2])

E2 B2(x)
ab ([0.1, 0.3], [−0.3,−0.1])
bc ([0.2, 0.4], [−0.5,−0.3])
cf ([0.1, 0.5], [−0.3,−0.1])
bf ([0.1, 0.4], [−0.3,−0.2])
bd ([0.2, 0.5], [−0.3,−0.1])

Then from the above definition, we have:

(A1 ∪A2)(a) = ([0.2, 0.4], [−0.5,−0.2]), (A1 ∪A2)(b) = ([0.4, 0.5], [−0.5,−0.4]),

(A1 ∪A2)(c) = ([0.3, 0.6], [−0.7,−0.5]), (A1 ∪A2)(d) = ([0.3, 0.7], [−0.8,−0.7]),
13
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(A1 ∪A2)(e) = ([0.2, 0.6], [−0.4,−0.3]), (A1 ∪A2)(f) = ([0.4, 0.6], [−0.4,−0.2]),

(B1 ∪B2)(ab) = ([0.1, 0.3], [−0.4,−0.1]), (B1 ∪B2)(bc) = ([0.2, 0.4], [−0.5,−0.3]),

(B1 ∪B2)(ce) = ([0.5, 0.6], [−0.4,−0.3]), (B1 ∪B2)(be) = ([0.1, 0.5], [−0.3,−0.2]),

(B1 ∪B2)(ad) = ([0.1, 0.3], [−0.4,−0.1]), (B1 ∪B2)(de) = ([0.1, 0.6], [−0.3,−0.2]),

(B1 ∪B2)(cf) = ([0.1, 0.5], [−0.3,−0.1]), (B1 ∪B2)(bf) = ([0.1, 0.4], [−0.3,−0.2]),

(B1 ∪B2)(bd) = ([0.2, 0.5], [−0.3,−0.1]).

Thus we can easily see that G1 ∪ G2 = (A1 ∪ A2, B1 ∪ B2) is an IVBG of G∗1 ∪ G∗2
(see Figure 4).

Theorem 3.18. Let G∗1 = (V1, E1) and G∗2 = (V2, E2) be two graphs such that V1 ∩
V2 = ∅. Let A1 ∈ IV B(V1), A2 ∈ IV B(V2), B1 ∈ IV B(E1) and B2 ∈ IV B(E2).
Then G1∪G2 = (A1∪A2, B1∪B2) is an IVBG of G∗ = G∗1∪G∗2 = (V1∪V2, E1∪E2) if
and only if G1 = (A1, B1) and G2 = (A2, B2) are IVBGs of G∗1 and G∗2, respectively.

Proof. Suppose G1 ∪G2 is an IVBG of G∗ and let xy ∈ E1. Then clearly, xy 6∈ E2

and x, y ∈ V1 − V2. Thus

BP
1 (xy) = (BP

1 ∪BP
2 )(xy) ≤ (AP

1 ∪AP
2 )(x) ∧ (AP

1 ∪AP
2 )(y) = AP

1 (x) ∧AP
1 (y),

BN
1 (xy) = (BN

1 ∪BN
2 )(xy) ≥ (AN

1 ∪AN
2 )(x) ∨ (AN

1 ∪AN
2 )(y) = AN

1 (x) ∨AN
1 (y).

So G1 = (A1, B1) is an IVBG of G∗1. Similarly, we can prove that G2 = (A2, B2) is
an IVBG of G∗2.

The converse is given by Proposition 3.16. �

Definition 3.19. Let G1 = (A1, B1) and G2 = (A2, B2) be two IVBGs of graphs
G∗1 = (V1, E1) and G∗2 = (V2, E2). Then the intersection of G1 and G2, denoted by
G1 ∩G2 = (A1 ∩A2, B1 ∩B2), is defined as follows:

(i) (AP
1 ∩AP

2 )(x) = AP
1 (x) ∧AP

2 (x), (AN
1 ∩AN

2 )(x) = AN
1 (x) ∨AN

2 (x),
for each x ∈ V1 ∩ V2,

(ii) (BP
1 ∩BP

2 )(xy) = BP
1 (xy) ∧BP

2 (xy), (BN
1 ∩BN

2 )(xy) = BN
1 (xy) ∨BN

2 (xy),
for each xy ∈ E1 ∩ E2.

Proposition 3.20. The intersection of two IVBGs is an IVBG.

Proof. The proof is straightforward. �

Example 3.21. Let G∗1 = (V1, E1) and G∗2 = (V2, E2) be two graphs given in
Example 3.17. Consider two IVBGs G1 = (A1, B1) and G2 = (A2, B2) of G∗1 and
G∗2, respectively defined in Example 3.17. Then we have:

(A1 ∩A2)(a) = ([0.2, 0.4], [−0.5,−0.2]), (A1 ∩A2)(b) = ([0.2, 0.5], [−0.6,−0.3]),

(A1 ∩A2)(c) = ([0.3, 0.6], [−0.7,−0.5]), (A1 ∩A2)(d) = ([0.2, 0.6], [−0.8,−0.6]),

(B1 ∩B2)(ab) = ([0.1, 0.3], [−0.3,−0.1]), (B1 ∩B2)(bc) = ([0.2, 0.4], [−0.5,−0.2]).

Thus we can easily see that G1 ∩ G2 = (A1 ∩ A2, B1 ∩ B2) is an IVBG of G∗1 ∩ G∗2
(see Figure 5).

14
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Figure 4. G1, G2, and G1 ∪G2.

Definition 3.22. Let G1 = (A1, B1) and G2 = (A2, B2) be two IVBGs of graphs
G∗1 = (V1, E1) and G∗2 = (V2, E2). Then the join of G1 and G2, denoted by G1+G2 =
(A1 +A2, B1 +B2), is defined as follows:

15
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(i) (AP
1 +AP

2 )(x) = (AP
1 ∪AP

2 )(x), (AN
1 +AN

2 )(x) = (AN
1 ∩AN

2 )(x),
for each x ∈ V1 ∪ V2,

(ii) (BP
1 +BP

2 )(xy) = (BP
1 ∪BP

2 )(xy), (BN
1 +BN

2 )(xy) = (BN
1 ∩BN

2 )(xy),
for each xy ∈ E1 ∩ E2,

(ii) (BP
1 +BP

2 )(xy) = AP
1 (x) ∨AP

2 )(y), (BN
1 +BN

2 )(xy) = BN
1 (x) ∧BN

2 )(y),

for each xy ∈ E′ .

Proposition 3.23. The join of two IVBGs is an IVBG.

Proof. Let G1 = (A1, B1) and G2 = (A2, B2) be two IVBGs of graphs G∗1 = (V1, E1)
and G∗2 = (V2, E2). We show that G1 + G2 = (A1 + A2, B1 + B2) is an IVBG of
G∗1 + G∗2 = (V1 + V2, E1 + E2). From Proposition 3.16, it is sufficient to prove the

case when xy ∈ E′ .
Suppose xy ∈ E′ . Then

(BP
1 +BP

2 )(xy) = AP
1 (x) ∨AP

2 (y)
≤ (AP

1 ∪AP
2 )(x) ∨ (AP

1 ∪AP
2 )(y)

= (AP
1 +AP

2 )(x) ∨ (AP
1 +AP

2 )(y),

(BN
1 +BN

2 )(xy) = AN
1 (x) ∧AN

2 (y)
≥ (AN

1 ∪AN
2 )(x) ∧ (AN

1 ∪AN
2 )(y)

= (AN
1 +AN

2 )(x) ∧ (AN
1 +AN

2 )(y).
Thus G1 +G2 is an IVBG of G∗1 +G∗2. �

The following is an immediate result of Theorem 3.18 and Proposition 3.23.

Theorem 3.24. Let G∗1 = (V1, E1) and G∗2 = (V2, E2) be two graphs such that
V1 ∩ V2 = ∅. Let A1 ∈ IV B(V1), A2 ∈ IV B(V2), B1 ∈ IV B(E1) and B2 ∈
IV B(E2). Then G1 + G2 = (A1 + A2, B1 + B2) is an IVBG of G∗ = G∗1 + G∗2 =
(V1 +V2, E1 +E2) if and only if G1 = (A1, B1) and G2 = (A2, B2) are IVBGs of G∗1
and G∗2, respectively.

Definition 3.25. Let G = (A,B) be an IVBG of graph G∗ = (V,E). Then G =
(A,B) is said to be complete, if for any x, y ∈ V ,

B(xy) = (AP (x) ∧AP (y), AN (x) ∨AN (y)).

Figure 5. G1 ∩G2.
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Figure 6. A complete IVBG G.

It is obvious that if G is a complete IVBG of a graph G∗, then G− and G+ are
bipolar fuzzy complete graphs of G∗.

Example 3.26. Let G∗ = (V,E) such that V = {a, b, c}. Let A ∈ IV B(V ) and let
B ∈ IV B(V × V ) be defined as follows:

V A(t)
a ([0.3, 0.5], [−0.3,−0.2])
b ([0.4, 0.6], [−0.4,−0.3])
c ([0.5, 0.7], [−0.5,−0.4])

V × V B(t)
ab ([0.3, 0.5], [−0.3,−0.2])
bc ([0.4, 0.6], [−0.4,−0.3])
ac ([0.3, 0.5], [−0.3,−0.2])

Then by routine computations, it is easy to see that G is a complete IVBG of G∗

(see Figure 6).

Remark 3.27. The union of two complete IVBGs is not necessarily a complete
IVBG.

Example 3.28. Let G∗ = (V,E) be a graph such that V = {a, b, c}. Consider two
complete IVBGs G1 = (A1, B1) and G2 = (A2, B2) defined as follows, respectively:

A1(a) = ([0.7, 0.9], [−0.4,−0.2]), A1(b) = ([0.5, 0.8], [−0.6,−0.3]),

A1(c) = ([0.6, 0.7], [−0.5,−0.1]),

B1(ab) = ([0.5, 0.8], [−0.4,−0.2]), B1(bc) = ([0.5, 0.7], [−0.5,−0.1]),

B1(ac) = ([0.6, 0.8], [−0.4,−0.1]),

A2(a) = ([0.3, 0.6], [−0.4,−0.2]), A2(b) = ([0.4, 0.7], [−0.3,−0.1]),

A2(c) = ([0.8, 0.9], [−0.5,−0.3]),

B2(ab) = ([0.3, 0.6], [−0.3,−0.1]), B2(bc) = ([0.4, 0.7], [−0.3,−0.1]),

B2(ac) = ([0.3, 0.6], [−0.4,−0.2]).

Then we have:

(A1 ∪A2)(a) = ([0.7, 0.9], [−0.4,−0.2]), (A1 ∪A2)(b) = ([0.5, 0.8], [−0.6,−0.3]),

(A1 ∪A2)(c) = ([0.8, 0.9], [−0.5,−0.3]),

(B1 ∪B2)(ab) = ([0.5, 0.8], [−0.4,−0.2]), (B1 ∪B2)(bc) = ([0.5, 0.7], [−0.5,−0.1]),

(B1 ∪B2)(ac) = ([0.6, 0.8], [−0.4,−0.2]).

17
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But (A1 ∪ A2)(a) ∧ (A1 ∪ A2)(b) = ([0.5, 0.8], [−0.6,−0.3]). Thus (B1 ∪ B2)(ab) 6=
(A1 ∪A2)(a) ∧ (A1 ∪A2)(b). So G1 ∪G2 is not a complete IVBG.

Proposition 3.29. Let G1 = (A1, B1) and G2 = (A2, B2) be two complete IVBGs
of graphs G∗1 = (V1, E1) and G∗2 = (V2, E2), respectively. Then G1∩G2 is a complete
IVBG.

Proof. Let x, y ∈ V1 ∩ V2. Then
(BP

1 ∩BP
2 )(xy) = BP

1 (xy) ∧BP
2 (xy)

= (AP
1 (x) ∧AP

1 (y)) ∧ (AP
2 (x) ∧AP

2 (y))
= (AP

1 (x) ∧AP
2 (x)) ∧ (AP

1 (y) ∧AP
2 (y))

= (AP
1 ∩AP

2 )(x) ∧ (AP
1 ∩AP

2 )(y),
(BN

1 ∩BN
2 )(xy) = BN

1 (xy) ∨BN
2 (xy)

= (AN
1 (x) ∨AN

1 (y)) ∨ (AN
2 (x) ∨AN

2 (y))
= (AN

1 (x) ∨AN
2 (x)) ∨ (AN

1 (y) ∨AN
2 (y))

= (AN
1 ∩AN

2 )(x) ∧ (AN
1 ∩AN

2 )(y).
Thus G1 ∩G2 is a complete IVBG. �

Proposition 3.30. Let G1 = (A1, B1) and G2 = (A2, B2) be two complete IVBGs
of graphs G∗1 = (V1, E1) and G∗2 = (V2, E2), respectively, where V1 ∩ V2 = ∅. Then
G1 +G2 is a complete IVBG.

Proof. suppose xy ∈ E′ . Then
(BP

1 +BP
2 )(xy) = AP

1 (x) ∨AP
2 (y)

= (AP
1 ∪AP

2 )(x) ∨ (AP
1 ∪AP

2 )(y)
= (AP

1 +AP
2 )(x) ∨ (AP

1 +AP
2 )(y),

(BN
1 +BN

2 )(xy) = AN
1 (x) ∧AN

2 (y)
= (AN

1 ∪AP
2 )(x) ∧ (AN

1 ∪AN
2 )(y)

= (AN
1 + AN

2 )(x) ∧ (AN
1 + AN

2 )(y). Suppose xy ∈ E1 ∪ E2.
Then we can easily see that

(BP
1 +BP

2 )(xy) = (AP
1 +AP

2 )(x) ∨ (AP
1 +AP

2 )(y),

(BN
1 +BN

2 )(xy) = (AN
1 +AN

2 )(x) ∧ (AN
1 +AN

2 )(y).

Thus G1 +G2 is a complete IVBG. �

The following is an immediate result of Proposition 3.13 and Definition 3.25.

Proposition 3.31. If G = (A,B) is a complete IVBG, then so is G[G].

4. Isomorphisms of IVBGs and isometric IVBGs

In this section, we define an isomorphism and an isometric between interval-valued
bipolar fuzzy graphs and investigate various properties.

Definition 4.1. Let G1 = (A1, B1) and G2 = (A2, B2) be two IVBGs of graphs
G∗1 = (V1, E1) and G∗2 = (V2, E2). Then a homomorphism f : G1 → G2 is a mapping
f : V1 → V2 which satisfies the following conditions:

(i) AP
1 (x) ≤ AP

2 (f(x)), AN
1 (x) ≥ AN

2 (f(x)) for each x ∈ V1,
(ii) BP

1 (xy) ≤ BP
2 (f(x)f(y)), BN

1 (xy) ≥ AN
2 (f(x)f(y)) for each xy ∈ E1.

In particular, if G1 = G2 = G, then the homomorphism f over G is called an
endomorphism.

18
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Definition 4.2. Let G1 = (A1, B1) and G2 = (A2, B2) be two IVBGs of graphs
G∗1 = (V1, E1) and G∗2 = (V2, E2). Then an isomorphism f : G1 → G2 is a bijective
mapping f : V1 → V2 which satisfies the following conditions:

(i) A1(x) = A2(f(x)) for each x ∈ V1,
(ii) B1(xy) = B2(f(x)f(y)) for each xy ∈ E1.

In this case, G1 and G2 are said to be isomorphic and is denoted by G1 ' G2.
In particular, if G1 = G2 = G, then the isomorphism f over G is called an

automorphism. We will denote the set of all interval-valued bipolar automorphisms
of G as Aut(G).

Remark 4.3. Let G = (A,B) be an IVBG of graph G∗ = (V,E) and let e : V → V
be the mapping defined by e(x) = x for each x ∈ V . Then clearly, e ∈ Aut(G).

Definition 4.4. Let G1 = (A1, B1) and G2 = (A2, B2) be two IVBGs of graphs
G∗1 = (V1, E1) and G∗2 = (V2, E2). Then a weak isomorphism f : G1 → G2 is a
bijective mapping f : V1 → V2 which satisfies the following conditions:

(i) f is a homomorphism,
(ii) A1(x) = A2(f(x)) for each x ∈ V1.

It is obvious that a weak isomorphism preserves the weights of nodes but not
necessarily the weights of the arcs.

Example 4.5. Let G∗1 = (V1, E1) and G∗2 = (V2, E2) be two graph such that V1 =
{a1, b1} and V2 = {a2, b2}. Consider two IVBGs G1 = (A1, B1) and G2 = (A2, B2)
defined as follows, respectively:

A1(a1) = ([0.5, 0.8], [−0.5,−0.3]), A1(b1) = ([0.6, 0.7], [−0.6,−0.2]),

B1(a1b1) = ([0.4, 0.6], [−0.4,−0.1]),

A2(a2) = ([0.6, 0.7], [−0.6,−0.2]), A2(b2) = ([0.5, 0.8], [−0.5,−0.3]),

B2(a2b2) = ([0.2, 0.5], [−0.4,−0.1]).

Let f : V1 → V2 be the mapping defined by f(a1) = a2 and f(b1) = b2. Then clearly,
f is bijective and a homomorphism. Moreover, we can easily see that:

A1(a1) = A2(b2), A1(b1) = A2(a2), BN
1 (a1b1) = BN

2 (a2b2).

But BP
1 (a1b1) = [0.4, 0.6] 6= [0.2, 0.5] = BP

2 (a2b2) = BP
2 (f(a1)f(b1)). Thus f is a

weak isomorphism but not an isomorphism.

Definition 4.6. Let G1 = (A1, B1) and G2 = (A2, B2) be two IVBGs of graphs
G∗1 = (V1, E1) and G∗2 = (V2, E2). Then a co-weak isomorphism f : G1 → G2 is a
bijective mapping f : V1 → V2 which satisfies the following conditions:

(i) f is a homomorphism,
(ii) B1(xy) = B2(f(x)f(y)) for each xy ∈ E1.

It is obvious that a co-weak isomorphism preserves the weights of arcs but not
necessarily the weights of the nodes.

Example 4.7. Let G∗ = (V,E) be a graph such that V = {a, b, c} and E = {ab, bc}.
Consider the IVBG G = (A,B) defined as follows:

A1(a1) = ([0.5, 0.8], [−0.5,−0.3]), A1(b1) = ([0.6, 0.7], [−0.6,−0.2]),
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B1(a1b1) = ([0.2, 0.5], [−0.4,−0.1]),

A2(a2) = ([0.6, 0.7], [−0.6,−0.2]), A2(b2) = ([0.5, 0.8], [−0.5,−0.3]),

B2(a2b2) = ([0.2, 0.5], [−0.4,−0.1]).

Let f : V1 → V2 be the mapping defined by f(a1) = a2 and f(b1) = b2. Then clearly,
f is bijective and a homomorphism. Moreover, we can easily see that:

B1(a1b1) = ([0.2, 0.5], [−0.4,−0.1]) = B2(a2b2) = B2(f(a1)f(b1)).

ButA1(a1) = ([0.5, 0.8], [−0.5,−0.3]) 6= ([0.6, 0.7], [−0.6,−0.2]) = A2(a2) = A2(f(a1)).
Thus f is a co-weak isomorphism but not an isomorphism.

Remark 4.8. In Definitions 4.4 and 4.6, we can easily see that if G1 = G2, then
the weak and co-weak isomorphisms actually become isomorphic.

Proposition 4.9. The isomorphism between interval-valued bipolar fuzzy graphs is
an equivalence relation.

Proof. Let G be the set of all IVBGs. Let RI be the relation on G defined as follows:
for any G1 = (A1, B1), G2 = (A2, B2) ∈ G,

(G1, G2) ∈ RI if and only if there is an isomorphism f : G1 → G2,

where G1 and G2 are IVBGs of G∗1 = (V1, E1) and G∗2 = (V2, E2), respectively.
(i) RI is reflexive: The proof is obvious.
(ii) RI is symmetric: Let G1 = (A1, B1), G2 = (A2, B2) ∈ G and suppose

(G1, G2) ∈ RI . Then there is an bijection f : V1 → V2 defined by

(4.1) f(x1) = x2 for each x1 ∈ V1
satisfying the following conditions:

A1(x1) = A2(f(x1)) for each x1 ∈ V1,
B1(x1y1) = B2(f(x1)f(y1)) for each x1y1 ∈ E1.

Since f is bijective, by (4.1), it follows that f−1(x2) = x1 for each x2 ∈ V2. Thus
we have

A2(x2) = A1(f−1(x2)) for each x2 ∈ V2,
B2(x2y2) = B1(f−1(x2)f−1(y2)) for each x2y2 ∈ E2.

So f−1 : G2 → G1 is an isomorphism. Hence (G2, G1) ∈ RI .
(iii) RI is transitive: Let G1 = (A1, B1), G2 = (A2, B2) and G3 = (A3, B3) be

IVBGs of G∗1 = (V1, E1), G∗2 = (V2, E2) and G∗3 = (V3, E3), respectively. Suppose
(G1, G2), (G2, G3) ∈ RI . Then clearly there are isomorphisms f : G1 → G2 and
g : G2 → G3. Thus there are bijective mappings f : V1 → V2 and g : V2 → V3 defined
by f(x1) = x2 and g(x2) = x3 for each x1 ∈ V1 and each x2 ∈ V2, respectively such
that

(4.2) A1(x1) = A2(f(x1) = A2(x2) for each x1 ∈ V1,

(4.3) B1(x1y1) = B2(f(x1)f(y1)) = B2(x2y2) for each x1y1 ∈ E1,

(4.4) A2(x2) = A3(f(x2) = A3(x3) for each x2 ∈ V2,

(4.5) B2(x2y2) = B3(f(x2)f(y2)) = B3(x3y3) for each x2y2 ∈ E2.
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Since f : V1 → V2 and g : V2 → V3 are bijective such that f(x1) = x2 and g(x2) = x3
for each x1 ∈ V1 and each x2 ∈ V3, g ◦f : V1 → V3 is bijective such that (g ◦f)(x1) =
g(f(x1)) = x3 for each x1 ∈ V1. From (4.2) and (4.4), we have: for each x1 ∈ V1,

A1(x1) = A2(f(x1)) = A2(x2) = A3(g(x2)) = A3(g ◦ f)(x1)).

Furthermore, from (4.3) and (4.5), we have: for each x1y1 ∈ E1,

B1(x1y1) = B3((g ◦ f)(x1)(g ◦ f)(y1)).

So g ◦ f : G1 → G3 is an isomorphism, i.e., (G1, G3) ∈ RI . Hence RI is transitive.
Therefore RI is an equivalence relation on G. This completes the proof. �

Proposition 4.10. The weak isomorphism between interval-valued bipolar fuzzy
graphs is a partial order relation.

Proof. Let G be the set of all IVBGs. Let RWI be the relation on G defined as
follows: for any G1 = (A1, B1), G2 = (A2, B2) ∈ G,

(G1, G2) ∈ RWI if and only if there is a weak isomorphism f : G1 → G2,

where G1 and G2 are IVBGs of G∗1 = (V1, E1) and G∗2 = (V2, E2), respectively.
(i) RWI is reflexive: The proof is obvious.
(ii) RWI is antisymmetric: Let G1 = (A1, B1), G2 = (A2, B2) ∈ G and suppose

(G1, G2) ∈ RWI and (G2, G1) ∈ RWI . Let f : G1 → G2 and g : G2 → G1 be weak
isomorphisms. Then clearly, f : V1 → V2 and g : V2 → V1 are bijective mappings,
respectively defined by

f(x1) = x2 for each x1 ∈ V1 and g(x2) = x1 for each x2 ∈ V2
satisfying the following conditions, respectively:

A1(x1) = A2(f(x1)) for each x1 ∈ V1,

(4.6)
BP

1 (x1y1) ≤ BP
2 (f(x1)f(y1)), BN

1 (x1y1) ≥ BN
2 (f(x1)f(y1)) for each x1y1 ∈ E1,

A2(x2) = A1(g(x2)) for each x2 ∈ V2,
(4.7)
BP

2 (x2y2) ≤ BP
1 (g(x2)g(y2)), BN

2 (x2y2) ≥ BN
1 (g(x2)g(y2)) for each x2y2 ∈ E2.

The inequalities (4.6) and (4.7) hold on the finite sets V1 and V2 only when G1

and G2 have the same number of edges and the corresponding edges have the same
weight. Thus G1 = G2. So RWI is symmetric.

(iii) RWI is transitive: Let G1 = (A1, B1), G2 = (A2, B2) and G3 = (A3, B3)
be IVBGs of G∗1 = (V1, E1), G∗2 = (V2, E2) and G∗3 = (V3, E3), respectively. Sup-
pose (G1, G2), (G2, G3) ∈ RWI . Let f : G1 → G2 and g : G2 → G3 be weak
isomorphisms. Then clearly, f : V1 → V2 and g : V2 → V3 are bijective mappings,
respectively defined by

f(x1) = x2 for each x1 ∈ V1 and g(x2) = x3 for each x2 ∈ V2
satisfying the following conditions, respectively:

(4.8) A1(x1) = A2(f(x1)) = A2(x2) for each x1 ∈ V1,
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(4.9)
BP

1 (x1y1) ≤ BP
2 (f(x1)f(y1)) = BP

2 (x2y2), BN
1 (x1y1) ≥ BN

2 (f(x1)f(y1)) = BN
2 (x2y2)

for each x1y1 ∈ E1,

(4.10) A2(x2) = A3(g(x2)) = A3(x3) for each x2 ∈ V2,
(4.11)
BP

2 (x2y2) ≤ BP
3 (g(x2)g(y2)) = BP

3 (x3y3), BN
2 (x2y2) ≥ BN

3 (g(x2)g(y2)) = BN
3 (x3y3)

for each x2y2 ∈ E2. Since f : V1 → V2 and g : V2 → V3 are bijective such that
f(x1) = x2 for each x1 ∈ V1 and g(x2) = x3 for each x2 ∈ V2, g ◦ f : V1 → V3 is
bijective such that (g ◦ f)(x1) = g(f(1)) = g(x2) = x3 for each x1 ∈ V1. Thus from
(4.8) and (4.10), we have: for each x1 ∈ V1,

A1(x1) = A3((g ◦ f)(x1)).

Furthermore, from (4.9) and (4.11), we have: for each x1y1 ∈ E1,

BP
1 (x1y1) ≤ BP

3 (x1y1)((g ◦ f)(x1)(g ◦ f)(x2)),

BN
1 (x1y1) ≥ BN

3 (x1y1)((g ◦ f)(x1)(g ◦ f)(x2)).

So g ◦f : G1 → G3 is a weak isomorphism. Hence RWI is transitive. Therefore RWI

is a partial order relation. This completes the proof. �

Definition 4.11. Let S be a semigroup and let A ∈ IV B(S). Then A is called an
interval-valued bipolar fuzzy subsemigroup of S, if it satisfies the following condi-
tions:

AP (xy) ≥ AP (x) ∧AP (y), AN (xy) ≤ AN (x) ∨AN (y)

for any x, y ∈ S.

Definition 4.12. Let G be a group and let A ∈ IV B(G). Then A is called an
interval-valued bipolar fuzzy subgroup of G, if it satisfies the following conditions:

(i) A is an interval-valued bipolar fuzzy subsemigroup of G,
(ii) A(x−1) = A(x) for each x ∈ G.

Now let us show how to associate an interval-valued bipolar fuzzy subgroup with
an IVBG in a natural way.

Proposition 4.13. Let G = (A,B) be an IVBG of a graph G∗ = (V,E) and let
Aut(G) be the set of all automorphisms of G. We define the binary operation ◦ on
Aut(G) as follows: for any f, g ∈ Aut(G) and any x, y ∈ V ,

BP ((g ◦ f)(x)(g ◦ f)(y)) = BP (g(f(x))g(f(y))) ≥ BP (f(x)f(y)) ≥ BP (xy),

BN ((g ◦ f)(x)(g ◦ f)(y)) = BN (g(f(x))g(f(y))) ≤ BN (f(x)f(y)) ≥ BN (xy),

BP ((g ◦ f)(x)) = BP (g(f(x))) ≥ BP (f(x)) ≥ BP (x),

BN ((g ◦ f)(x)) = BN (g(f(x))) ≥ BN (f(x)) ≥ BN (x).

Then (Aut(G), ◦) forms a group.

Proof. It is obvious that ◦ is well-defined and satisfies associativity. Moreover, from
Remark 4.3, e ∈ Aut(G), e ◦ f = f = f ◦ e and A(f−1) = A(f) for each f ∈ Aut(G).
Thus (Aut(G), ◦) forms a group. �
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Proposition 4.14. Let G = (A,B) be an IVBG of a graph G∗ = (V,E) and let
Aut(G) be the set of all automorphisms of G. Let

g = (gP , gN ) = ([gP,−, gP,+], [gN,−, gN,+])

be an interval-valued bipolar fuzzy set in Aut(G) defined as follows: for each f ∈
Aut(G),

gP (f) = sup{BP (f(x), f(y)) : (x, y) ∈ V × V }
= [
∨

(x,y)∈V×V B
P,−(f(x), f(y)),

∨
(x,y)∈V×V B

P,+(f(x), f(y))],

gN (f) = inf{BN (f(x), f(y)) : (x, y) ∈ V × V }
= [
∧

(x,y)∈V×V B
N,−(f(x), f(y)),

∧
(x,y)∈V×V B

N,+(f(x), f(y))].

Then g is an interval-valued bipolar fuzzy subgroup of Aut(G).

Proof. The proof is straightforward. �

Proposition 4.15. Every interval-valued bipolar fuzzy subgroup has an embedding
into the interval-valued bipolar fuzzy subgroup of the group of automorphisms of some
IVBG.

Proof. The proof is straightforward. �

Definition 4.16. Let G = (A,B) be an IVBG of graphs G∗ = (V,E). Then the
complement of G, denoted by G = (A,B), is an IVBG of G∗ = (V ,E) defined as
follows:

(i) V = V , E = V × V − E,

(ii) A = (AP , AN ) ∈ IV B(V ) such that A(x) = A(x) for each x ∈ V ,

(iii) B = (BP , BN ) ∈ IV B(V × V ) such that

B(xy) = (AP (x) ∧AP (y)−BP (xy), AN (x) ∨AN (y)−BN (xy))

for each xy ∈ V × V .

BP (xy) =

{
[0, 0] if BP,−(xy) > 0[
AP,−(x) ∧AP,−(y), AP,+(x) ∧AP,+(y)

]
if BP,+(xy) = 0,

BN (xy) =

{
[0, 0] if BN,+(xy) < 0[
AN,−(x) ∨AN,−(y), AN,+(x) ∧AN,+(y)

]
if BN,−(xy) = 0.

Definition 4.17. Let G = (A,B) be an IVBG of graphs G∗ = (V,E). Then

G = (A,B) is said to be self-complementary, if G = G.

Example 4.18. Let G∗ = (V,E) be a graph such that V = {a, b, c} and E =
{ab, bc}. Consider the IVBG G = (A,B) defined as follows:

A(a) = ([0.1, 0.3], [−0.3,−0.1]), A(b) = ([0.2, 0.4], [−0.4,−0.2]),

A(c) = ([0.3, 0.5], [−0.5,−0.3]),

B(ab) = ([0.1, 0.3], [−0.3,−0.1]), B(bc) = ([0.2, 0.4], [−0.3,−0.2]).

Then clearly, A = A, B(ab) = B(ab) and B(bc) = B(bc). Thus G = G. So
G = (A,B) is self-complementary.

The following is the immediate result of Definitions 3.25 and 4.16.
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Proposition 4.19. Let G = (A,B) be a complete IVBG of a graph G∗ = (V,E).
Then G is self complementary.

Proposition 4.20. Let G1 = (A1, B1) and G2 = (A2, B2) be two IVBGs of a graph
G∗1 = (V1, E1) and G∗2 = (V2, E2), respectively. If G1 ' G2, then G1 ' G2.

Proof. Suppose G1 ' G2. Then clearly, there is a bijective mapping f : V1 → V2
satisfying the following conditions:

A1(x) = A2(f(x)) for each x ∈ V1,
B1(x) = B2(f(x)f(y)) for each xy ∈ E1.

Let xy ∈ V1 × V1.

Suppose BP,−
1 (xy) > 0. Then clearly, BP,−

2 (f(x)f(y)) > 0. Thus BP
1 (xy) =

BP
2 (f(x)f(y)) = [0, 0].

Suppose BP,+
1 (xy) = 0. Then clearly, BP,+

2 (f(x)f(y)) = 0. Thus we have

BP
1 (xy) = [AP,−

1 (x) ∧AP,−
1 (y), AP,+

1 (x) ∧AP,+
1 (y)]

= [AP,−
2 (f(x)) ∧AP,−

2 (f(y)), AP,+
2 (f(x)) ∧AP,+

2 (f(y))]

= BP
2 (f(x)f(y)).

Suppose BN,+
1 (xy) < 0. Then clearly, BN,+

2 (f(x)f(y)) < 0. Thus BN
1 (xy) =

BN
2 (f(x)f(y)) = [0, 0].

Suppose BN,−
1 (xy) = 0. Then clearly, BN,−

2 (f(x)f(y)) = 0. Thus we have

BN
1 (xy) = [AN,−

1 (x) ∨AN,−
1 (y), AN,+

1 (x) ∨AN,+
1 (y)]

= [AN,−
2 (f(x)) ∨AN,−

2 (f(y)), AN,+
2 (f(x)) ∨AN,+

2 (f(y))]

= BN
2 (f(x)f(y)).

So in either cases, B1(xy) = B2(f(x)f(y)). Hence G1 ' G2. �

Definition 4.21. Let G = (A,B) be an IVBG of a graph G∗ = (V,E). Let u =
u0, u1, · · · , ui, · · · , un = v be a path from u to v in G∗. Then the BP distance and
BN distance from u to v, denoted by δP (u, v) and δN (u, v), defined by, respectively:

δP (u, v) =
∧
{Σn

i=1[
1

BP,−(ui−1ui)
,

1

BP,+(ui−1ui)
]},

δN (u, v) =
∨
{Σn

i=1[
1

BN,−(ui−1ui)
,

1

BN,+(ui−1ui)
]}.

Definition 4.22. Let G1 = (A1, B1) and G2 = (A2, B2) be two IVBGs of a graph
G∗1 = (V1, E1) and G∗2 = (V2, E2), respectively. Then G2 is said to be isometric
from G1 or G1 is said to be isometric to G2, if for each v ∈ V1, there is a bijective
mapping gv : V1 → V2 such that for each u ∈ V1,

δP1 (u, v) = δP2 (gv(u), gv(v)), δN1 (u, v) = δN2 (gv(u), gv(v)).

Proposition 4.23. Let G1 = (A1, B1) and G2 = (A2, B2) be two IVBGs of a graph
G∗1 = (V1, E1) and G∗2 = (V2, E2), respectively. If G1 ' G2, then G1 is isometric to
G2.

Proof. Suppose G1 ' G2. Then clearly, there is a bijective mapping g : V1 → V2
satisfying the following conditions:

A1(x) = A2(g(x)) for each x ∈ V1, B1(xy) = B2(g(x)g(y)) for each xy ∈ E1.
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For any u, v ∈ V1, let u = u0, u1, · · · , ui, · · · , un = v be a path from u to v in
G∗. Then

δP1 (u, v) =
∧
{Σn

i=1[ 1

BP,−
1 (ui−1ui)

, 1

BP,+
1 (ui−1ui)

]}
=
∧
{Σn

i=1[ 1

BP,−
2 (g(ui−1)g(ui))

, 1

BP,+
2 (g(ui−1)g(ui))

]}
= δP2 (g(u), g(v)),

δN1 (u, v) =
∨
{Σn

i=1[ 1

BN,−
1 (ui−1ui)

, 1

BN,+
1 (ui−1ui)

]}
=
∨
{Σn

i=1[ 1

BN,−
2 (g(ui−1)g(ui))

, 1

BN,+
2 (g(ui−1)g(ui))

]}
= δN2 (g(u), g(v)).

Thus G1 is isometric to G2. �

Remark 4.24. (1) Even if G1 is co-weak isomorphic to G2, Proposition 4.23 holds.
(2) From Proposition 4.20, we know that if G1 ' G2, the G1 ' G2. But there is

not so in the case of isometry, i.e., G2 is isometric from G1 but G2 is not isometric
from G1.

Example 4.25. Consider two IVBGs G1 = (A1, B1) and G2 = (A2, B2) of graphs
G∗1 = (V1, E1) and G∗2 = (V2, E2) such that V1 = {a, b, c, d}, E1 = {ab, bc, ad, bd},
V2 = {x, u, v, w} and E2 = {xu, xv, xw, uv, vw}, respectively given by:

A1(a) = ([
1

2
,

1

2
], [−1,−1]), A1(b) = ([1, 1], [−1,−1]),

A1(c) = ([
1

2
,

1

2
], [−1,−1]), A1(d) = ([

1

5
,

1

5
], [−1,−1]),

B1(ab) = ([
1

8
,

1

8
], [−1

3
,−1

3
]), B1(bc) = ([

1

4
,

1

4
], [−1

3
,−1

3
]),

A1(ad) = ([
1

9
,

1

9
], [−1

2
,−1

2
]), A1(ad) = ([

1

9
,

1

9
], [−1

2
,−1

2
]),

A2(x) = A2(u) = A2(v) = A2(w) = ([1, 1], [−1,−1]),

B2(xu) = ([
1

9
,

1

9
], [−1

2
,−1

2
]), B2(xv) = ([

1

9
,

1

9
], [−1

2
,−1

2
]),

B2(xw) = ([
1

13
,

1

13
], [−1

5
,−1

5
]), B2(uv) = ([

1

8
,

1

8
], [−1

3
,−1

3
]),

B2(vw) = ([
1

4
,

1

4
], [−1

3
,−1

3
]).

Then we can easily calculate that

δP1 (a, b) = [8, 8], δN1 (a, b) = [−3,−3], δP1 (a, c) = [12, 12], δN1 (a, c) = [−6,−6],

δP1 (a, d) = [9, 9], δN1 (a, d) = [−2,−2], δP1 (b, d) = [9, 9], δN1 (b, d) = [−2,−2],

δP1 (c, d) = [13, 13], δN1 (c, d) = [−5,−5],

δP2 (u, v) = [8, 8], δN2 (u, v) = [−3,−3], δP2 (u,w) = [12, 12], δN2 (u,w) = [−6,−6],

δP2 (u, x) = [9, 9], δN2 (u, x) = [−2,−2], δP2 (u,w) = [4, 4], δN2 (u,w) = [−3,−3],

δP2 (v, x) = [9, 9], δN1 (c, d) = [−5,−5].

Let g : V1 → V2 be the mapping defined as follows:

g(a) = u, g(b) = v, g(c) = w, g(d) = x.
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Then clearly, g is a bijective mapping preserving the distance between every pair of
vertices in G1 and G2. Thus G2 is isometric from G1.

On the other hand, we have G1 = (A1, B1) and G2 = (A2, B2), such that

B1(a, d) = ([
1

2
,

1

2
], [−1,−1]), B1(c, d) = ([

1

5
,

1

5
], [−1,−1]),

B2(u,w) = ([1, 1], [−1,−1]).

Moreover, δ1(a, d) = ([2, 2], [−1,−1]), δ1(c, d) = [5, 5], [−1,−1]) and δ2(u, v) =
([1, 1], [−1,−1]). So there is not a bijective between G1 and G2 preserving distance.
Hence G2 is not isometric from G1.

Proposition 4.26. Isometry on IVBGs is an equivalence relation.

Proof. Let G be the set of all IVBGs. Let RIso be the relation on G defined as
follows: for any G1 = (A1, B1), G2 = (A2, B2) ∈ G,

(G1, G2) ∈ RIso if and only if G2 is isometric from G1,

where G1 and G2 are IVBGs of G∗1 = (V1, E1) and G∗2 = (V2, E2), respectively.
(i) RIso is reflexive: The proof is obvious.
(ii) RIso is symmetric: Let G1 = (A1, B1), G2 = (A2, B2) ∈ G and suppose

(G1, G2) ∈ RIso. Then clearly, G2 is isometric from G1. Thus there is an bijection
g : V1 → V2 defined by

(4.12) f(v1) = v2 for each v1 ∈ V1
such that δ1(u1, v1) = δ2(g(u1), g(v1)) = δ2(u2, v2) for any u1, v1 ∈ V1.
Since g is bijective, g−1 : V2 → V1 is bijective. By (4.12), g−1(u2) = u1 and
g−1(v2) = v1 for any u2, v2 ∈ V2. Moreover, we have

δ2(u2, v2) = δ1(u1, v1) = δ1(g−1(u2), g−1(v2)).

So G1 is isometric from G2, i.e., (G2, G1) ∈ RIso. Hence RIso is symmetric.
(iii) RIso is transitive: Let G1 = (A1, B1), G2 = (A2, B2) and G3 = (A3, B3) be

IVBGs of G∗1 = (V1, E1), G∗2 = (V2, E2) and G∗3 = (V3, E3), respectively. Suppose
(G1, G2), (G2, G3) ∈ RI . Then clearly, G2 is isometric from G1 and G3 is isometric
from G2. Thus there are bijective mappings f : V1 → V2 and g : V2 → V3 defined by
f(v1) = v2 and g(v2) = v3 for each v1 ∈ V1 and each v2 ∈ V2, respectively such that

(4.13) δ1(u1, v1) = δ2(f(u1), f(v1)) = δ2(u2, v2) for any u1, v1 ∈ V1,

(4.14) δ2(u2, v2) = δ3(g(u2), g(v2)) = δ3(u3, v3) for any u2, v1 ∈ V2.

Since f : V1 → V2 and g : V2 → V3 are bijective such that f(u1) = u2 and g(u2) =
u3 for each u1 ∈ V1 and each u2 ∈ V3, g ◦ f : V1 → V3 is bijective such that
(g ◦ f)(u1) = g(f(u1)) = u3 for each u1 ∈ V1. From (4.13) and (4.14), we have: for
any u1, v1 ∈ V1,

δ1(u1, v1) = δ3((g ◦ f)(u1), (g ◦ f)(v1)).

So G3 is isometric from G1, i.e., (G1, G3) ∈ RIso. Hence RIso is transitive. Therefore
RIso is an equivalence relation on G. This completes the proof. �
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5. Discussion

Compared to previous works on interval-valued fuzzy graphs [13] and bipolar
fuzzy graphs [28], the proposed IVBFG model provides a unified structure that
accommodates both bipolarity and interval uncertainty simultaneously. Unlike reg-
ular bipolar fuzzy graphs [29], which consider fixed membership values, our approach
introduces flexibility in modeling systems where the degree of membership is inher-
ently uncertain. The comparison with these existing models highlights the enhanced
representational capability of IVBFGs.

6. Conclusions

In this paper, we introduced the concept of interval-valued bipolar fuzz graphs and
give some basic operations between them, and we obtained some of their properties.
Also we defined an isomorphism and an isometric between interval-valued bipolar
fuzz graphs and studied some of their properties. In the future, we expect that
one apply interval-valued bipolar fuzz graphs to database theory, an expert system,
neural networks, the method for finding the shortest paths in networks and decision
making problems, etc.

Acknowledgements. We are thankful to referees for the comments and sugges-
tions they have made in finishing the paper. This paper was supported by Wonkwang
University in 2025.
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